Minimal subdynamics

Joshua Frisch, Anton Bernshteyn

November 12, 2025

 Topological dynamics is the study of dynamical systems equipped with a (compact) topology,

- Topological dynamics is the study of dynamical systems equipped with a (compact) topology,
- More formally we say that a topological dynamical system G, X is a compact (metrizable) space X and a homomorphism from G to homeo(X)

- Topological dynamics is the study of dynamical systems equipped with a (compact) topology,
- More formally we say that a topological dynamical system
 G, X is a compact (metrizable) space X and a homomorphism
 from G to homeo(X)
- First example, circle rotation.

- Topological dynamics is the study of dynamical systems equipped with a (compact) topology,
- More formally we say that a topological dynamical system G, X is a compact (metrizable) space X and a homomorphism from G to homeo(X)
- First example, circle rotation.
- Second example Shift action of Γ on 2^{Γ} The space $2^{\Gamma} = \{0,1\}^{\Gamma}$ consists of all labelings $x : \Gamma \to \{0,1\}$, equipped with the product topology (Cantor space).

The shift action $\Gamma \curvearrowright 2^{\Gamma}$ is defined by

$$(\gamma \cdot x)(\delta) := x(\delta \gamma)$$
 for all $\gamma, \delta \in \Gamma$, $x \in 2^{\Gamma}$.

Minimality in Topological Dynamics

Let $\Gamma \curvearrowright X$ be topological dynamical system: Then the following are equivalent

1 No proper closed invariant subsets: The only closed Γ -invariant subsets of X are \varnothing and X itself.

Minimality in Topological Dynamics

Let $\Gamma \curvearrowright X$ be topological dynamical system: Then the following are equivalent

- **No proper closed invariant subsets:** The only closed Γ -invariant subsets of X are \emptyset and X itself.
- **2 Dense orbits:** For every $x \in X$, the orbit $\Gamma \cdot x$ is dense in X.

Minimality in Topological Dynamics

Let $\Gamma \curvearrowright X$ be topological dynamical system: Then the following are equivalent

- **No proper closed invariant subsets:** The only closed Γ -invariant subsets of X are \varnothing and X itself.
- **2 Dense orbits:** For every $x \in X$, the orbit $\Gamma \cdot x$ is dense in X.
- **Open sets are syndetic:** For every nonempty open set $U \subseteq X$, there exists a finite $F \subseteq \Gamma$ such that

$$F \cdot U = X$$
.

(i.e. finitely many Γ -translates of U cover X.)

Observations about minimality

1 They exist Every topological dynamical system has a minimal subsystem.

Observations about minimality

- They exist Every topological dynamical system has a minimal subsystem.
- **Why** Zorn's lemma, alternatively, enumerate an open basis, iteratively remove if not syndetic

Observations about minimality

- They exist Every topological dynamical system has a minimal subsystem.
- **Why** Zorn's lemma, alternatively, enumerate an open basis, iteratively remove if not syndetic
- **OPPOPERTIES** Builds minimal systems, but gives you very little control over what they look like.

Background

A very natural open question was the following, given a group G and a subgroup H is there a faithful G topological dynamical system which is minimal as an H system.

Background

A very natural open question was the following, given a group G and a subgroup H is there a faithful G topological dynamical system which is minimal as an H system.

A special case

Even the following special case was unresolved:

Background

A very natural open question was the following, given a group G and a subgroup H is there a faithful G topological dynamical system which is minimal as an H system.

A special case

Even the following special case was unresolved:

Let F_2 be the free group on two generators. For a non-identity element $\gamma \in F_2$, does there exist a faithful F_2 -flow that is minimal for the cyclic subgroup $\langle \gamma \rangle$?

Background

A very natural open question was the following, given a group G and a subgroup H is there a faithful G topological dynamical system which is minimal as an H system.

A special case

Even the following special case was unresolved:

Let F_2 be the free group on two generators. For a non-identity element $\gamma \in F_2$, does there exist a faithful F_2 -flow that is minimal for the cyclic subgroup $\langle \gamma \rangle$?

W

e will actually ask a much more general question

S-minimality

Let $\Gamma \curvearrowright X$ be a continuous action on a compact Hausdorff space. How does it look like a dynamical systems for subgroups, for subsets? and let $S \subseteq \Gamma$.

Definition (S-minimality)

X is S-minimal if one (equivalently, both) of the following hold:

S-minimality

Let $\Gamma \curvearrowright X$ be a continuous action on a compact Hausdorff space. How does it look like a dynamical systems for subgroups, for subsets? and let $S \subseteq \Gamma$.

Definition (S-minimality)

X is S-minimal if one (equivalently, both) of the following hold:

1 Dense *S***-orbit:** For every $x \in X$, the partial orbit

$$S \cdot x = \{s \cdot x : s \in S\}$$

is dense in X.

S-minimality

Let $\Gamma \curvearrowright X$ be a continuous action on a compact Hausdorff space. How does it look like a dynamical systems for subgroups, for subsets? and let $S \subseteq \Gamma$.

Definition (*S*-minimality)

X is S-minimal if one (equivalently, both) of the following hold:

1 Dense *S***-orbit:** For every $x \in X$, the partial orbit

$$S \cdot x = \{s \cdot x : s \in S\}$$

is dense in X.

2 S-syndetic open sets: For every nonempty open $U \subseteq X$, there exists a finite $F \subseteq S$ such that

$$F^{-1} \cdot U = X$$
.

(i.e. finitely many S-translates of U cover X.)

\mathcal{F} -minimality

Let $\Gamma \curvearrowright X$ be a continuous action on a compact Hausdorff space, and let \mathcal{F} be a family of finite subsets of Γ .

Definition (\mathcal{F} -minimality)

The flow X is $\underline{\mathcal{F}\text{-minimal}}$ if for every nonempty open set $U\subseteq X$, there exists $F\in \mathcal{F}$ such that

$$F^{-1} \cdot U = X$$
.

That is, finitely many translates of U drawn from some $F \in \mathcal{F}$ cover X.

Theorem (Bernshteyn–F)

Let Γ be a countable group. If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of unbounded families of finite subsets of Γ , then there exists a free Γ -flow that is \mathcal{F}_n -minimal for all $n\in\mathbb{N}$.

Theorem (Bernshteyn–F)

Let Γ be a countable group. If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of unbounded families of finite subsets of Γ , then there exists a free Γ -flow that is \mathcal{F}_n -minimal for all $n\in\mathbb{N}$.

Theorem (Bernshteyn–F)

Let Γ be a countable group. If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of unbounded families of finite subsets of Γ , then there exists a free Γ -flow that is \mathcal{F}_n -minimal for all $n\in\mathbb{N}$.

Corollary

If $(S_n)_{n\in\mathbb{N}}$ is a sequence of infinite subsets of Γ , then there exists a free Γ -flow that is S_n -minimal for all n.

Theorem (Bernshteyn–F)

Let Γ be a countable group. If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of unbounded families of finite subsets of Γ , then there exists a free Γ -flow that is \mathcal{F}_n -minimal for all $n\in\mathbb{N}$.

Corollary

If $(S_n)_{n\in\mathbb{N}}$ is a sequence of infinite subsets of Γ , then there exists a free Γ -flow that is S_n -minimal for all n.

Theorem (Bernshteyn–F)

Let Γ be a countable group. If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of unbounded families of finite subsets of Γ , then there exists a free Γ -flow that is \mathcal{F}_n -minimal for all $n\in\mathbb{N}$.

Corollary

If $(S_n)_{n\in\mathbb{N}}$ is a sequence of infinite subsets of Γ , then there exists a free Γ -flow that is S_n -minimal for all n.

Corollary

If $(\Delta_n)_{n\in\mathbb{N}}$ is a sequence of infinite subgroups of Γ , then there exists a free Γ -flow that is Δ_n -minimal for all n.

Theorem (Bernshteyn–F)

Let Γ be a countable group. If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of unbounded families of finite subsets of Γ , then there exists a free Γ -flow that is \mathcal{F}_n -minimal for all $n\in\mathbb{N}$.

Corollary

If $(S_n)_{n\in\mathbb{N}}$ is a sequence of infinite subsets of Γ , then there exists a free Γ -flow that is S_n -minimal for all n.

Corollary

If $(\Delta_n)_{n\in\mathbb{N}}$ is a sequence of infinite subgroups of Γ , then there exists a free Γ -flow that is Δ_n -minimal for all n.

Theorem (Bernshteyn–F)

Let Γ be a countable group. If $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of unbounded families of finite subsets of Γ , then there exists a free Γ -flow that is \mathcal{F}_n -minimal for all $n\in\mathbb{N}$.

Corollary

If $(S_n)_{n\in\mathbb{N}}$ is a sequence of infinite subsets of Γ , then there exists a free Γ -flow that is S_n -minimal for all n.

Corollary

If $(\Delta_n)_{n\in\mathbb{N}}$ is a sequence of infinite subgroups of Γ , then there exists a free Γ -flow that is Δ_n -minimal for all n.

Corollary

If Γ has only countably many locally finite subgroups there exists a free Γ -flow that is Δ -minimal for every infinite subgroup $\Delta \leq \Gamma$.

Descriptive Set-Theoretic Corollaries

Corollary (Countably many complete sections)

Let $(B_n)_{n\in\mathbb{N}}$ be Borel complete sections in $\operatorname{Free}(2^{\Gamma})$, and let $(F_n)_{n\in\mathbb{N}}$ be finite subsets of Γ with $\sup |F_n| = \infty$. Then there exists $x \in \operatorname{Free}(2^{\Gamma})$ such that

 $x \in F_n \cdot B_n$ for infinitely many n.

Descriptive Set-Theoretic Corollaries

Corollary (Countably many complete sections)

Let $(B_n)_{n\in\mathbb{N}}$ be Borel complete sections in $\operatorname{Free}(2^{\Gamma})$, and let $(F_n)_{n\in\mathbb{N}}$ be finite subsets of Γ with $\sup |F_n| = \infty$. Then there exists $x \in \operatorname{Free}(2^{\Gamma})$ such that

 $x \in F_n \cdot B_n$ for infinitely many n.

Descriptive Set-Theoretic Corollaries

Corollary (Countably many complete sections)

Let $(B_n)_{n\in\mathbb{N}}$ be Borel complete sections in $\operatorname{Free}(2^{\Gamma})$, and let $(F_n)_{n\in\mathbb{N}}$ be finite subsets of Γ with $\sup |F_n| = \infty$. Then there exists $x \in \operatorname{Free}(2^{\Gamma})$ such that

 $x \in F_n \cdot B_n$ for infinitely many n.

Corollary (Uniform trapping)

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then there exists $n \in \mathbb{N}$ such that for every finite $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point (i.e. some orbit is contained in $F \cdot B$).

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Idea of proof of corollary.

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Idea of proof of corollary.

① Assume not: for each n, choose F_n with $|F_n| = n$ such that $F_n \cdot B$ does not trap a point.

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Idea of proof of corollary.

① Assume not: for each n, choose F_n with $|F_n| = n$ such that $F_n \cdot B$ does not trap a point.

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Idea of proof of corollary.

- Assume not: for each n, choose F_n with $|F_n| = n$ such that $F_n \cdot B$ does not trap a point.
- **2** By the main theorem, there is a free Γ -subshift $X \subseteq 2^{\Gamma}$ that is F_n^{-1} -minimal for all n.

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Idea of proof of corollary.

- Assume not: for each n, choose F_n with $|F_n| = n$ such that $F_n \cdot B$ does not trap a point.
- **2** By the main theorem, there is a free Γ -subshift $X \subseteq 2^{\Gamma}$ that is F_n^{-1} -minimal for all n.

Proof Sketch: Uniform Trapping

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Idea of proof of corollary.

- Assume not: for each n, choose F_n with $|F_n| = n$ such that $F_n \cdot B$ does not trap a point.
- **2** By the main theorem, there is a free Γ -subshift $X \subseteq 2^{\Gamma}$ that is F_n^{-1} -minimal for all n.
- Sy Baire Category there exist some open subset U of X such that B intersect U is comeagre.

Proof Sketch: Uniform Trapping

Corollary

If $B \subseteq \operatorname{Free}(2^{\Gamma})$ is a Borel complete section, then $\exists n$ such that for every $F \subseteq \Gamma$ with $|F| \ge n$, the set $F \cdot B$ traps a point.

Idea of proof of corollary.

- Assume not: for each n, choose F_n with $|F_n| = n$ such that $F_n \cdot B$ does not trap a point.
- **2** By the main theorem, there is a free Γ -subshift $X \subseteq 2^{\Gamma}$ that is F_n^{-1} -minimal for all n.
- **3** By Baire Category there exist some open subset U of X such that B intersect U is comeagre.
- Minimality forces X to be equal to $F_n \cdot U$ for some n, thus a generic point will be trapped.

Ideas in the Proof

Despite the basic problem being classical the tools are very new! Three key ingredients enter the construction:

1 Existence via genericity The desired topological dynamical systems form a dense G_{δ} set in a carefully chosen space of topological dynamical systems. We don't find them explicitly, we use Baire Category

Ideas in the Proof

Despite the basic problem being classical the tools are very new! Three key ingredients enter the construction:

- **1 Existence via genericity** The desired topological dynamical systems form a dense G_{δ} set in a carefully chosen space of topological dynamical systems. We don't find them explicitly, we use Baire Category
- Asymptotic separation index Our spaces are constructed using Asymptotic separation index A tool from descriptive combinatorics inspired by large-scale geometry of graphs, this seems to be the first application of this tool to pure topological dynamics

Ideas in the Proof

Despite the basic problem being classical the tools are very new! Three key ingredients enter the construction:

- **1 Existence via genericity** The desired topological dynamical systems form a dense G_{δ} set in a carefully chosen space of topological dynamical systems. We don't find them explicitly, we use Baire Category
- Asymptotic separation index Our spaces are constructed using Asymptotic separation index A tool from descriptive combinatorics inspired by large-scale geometry of graphs, this seems to be the first application of this tool to pure topological dynamics
- Oefinable Lovász Local Lemmas In order to prove the result we use use a continuous variant of the Lovász Local Lemmas to build approximations with the right properties.

The Goal

We want to construct a $\underline{\mathsf{compact}}$ Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Goal

We want to construct a $\underline{\mathsf{compact}}$ Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Goal

We want to construct a $\underline{\mathsf{compact}}$ Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Strategy

The Goal

We want to construct a <u>compact</u> Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Strategy

Bizzarely we analyze an action of Γ on a <u>not even locally compact</u> Polish space X.

• This actions carries a rich combinatorial structure coming from ASI which allow us to perform the combinatorics we need

The Goal

We want to construct a <u>compact</u> Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Strategy

- This actions carries a rich combinatorial structure coming from ASI which allow us to perform the combinatorics we need
- We use this space as an ingredient in our proof

The Goal

We want to construct a <u>compact</u> Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Strategy

- This actions carries a rich combinatorial structure coming from ASI which allow us to perform the combinatorics we need
- We use this space as an ingredient in our proof
- We need to build interesting self maps from X to X.

The Goal

We want to construct a <u>compact</u> Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Strategy

- This actions carries a rich combinatorial structure coming from ASI which allow us to perform the combinatorics we need
- We use this space as an ingredient in our proof
- We need to build interesting self maps from X to X.

The Goal

We want to construct a $\underline{\text{compact}}$ Γ -flow with strong minimality properties. Compactness is crucial and in many ways the point.

The Strategy

Bizzarely we analyze an action of Γ on a <u>not even locally compact</u> Polish space X.

- This actions carries a rich combinatorial structure coming from ASI which allow us to perform the combinatorics we need
- We use this space as an ingredient in our proof
- We need to build interesting self maps from X to X.

Why is this weird

What should actions on arbitrary polish spaces have to do with building TDS?, Hints that the dynamics on arbitrary polish spaces can still be very interesting!

Witnesses to ASI and Finite ASI

Space of witnesses.

Fix $s \in \mathbb{N}_{>0}$ and a finite $\Phi \subseteq \Gamma$. Define

$$\operatorname{Sep}(s,\Phi) := \left\{ x : \Gamma \to \{0,1,\ldots,s\} \; \middle| \; \forall i,\; x^{-1}(i) \text{ is } \Phi\text{-finite} \right\}.$$

(meaning the Φ -connected components are finite.

Set

$$\operatorname{Sep}(s) := \prod_{n \in \mathbb{N}} \operatorname{Sep}(s, \Phi_n),$$

where (Φ_n) enumerates all finite subsets of Γ . Sep(s) carries the diagonal shift action

$$(\gamma \cdot x)_n(\delta) := x_n(\delta \gamma) \qquad (\gamma, \delta \in \Gamma).$$

Finite (continuous) ASI.

For a free continuous action $\Gamma \curvearrowright X$ on a zero-dimensional Polish space, the <u>continuous asymptotic separation index</u> $\operatorname{asi}(X)$ is the least s such that X can be mapped continuously into Sep(s)

Amply Syndetic Spaces

Definition (Amply syndetic Γ-space)

A Polish Γ -space X is amply syndetic if:

For every finite tuple of nonempty open sets $U_1,\ldots,U_k\subseteq X$, there exists $n\in\mathbb{N}$ such that for every finite $F\subseteq\Gamma$ with $|F|\geq n$, there is a continuous Γ -equivariant map $\pi:X\to X$ with the property that

$$\pi^{-1}(U_1), \ldots, \pi^{-1}(U_k)$$

are all *F*-syndetic.

Amply Syndetic Spaces

Definition (Amply syndetic Γ-space)

A Polish Γ -space X is amply syndetic if:

For every finite tuple of nonempty open sets $U_1,\ldots,U_k\subseteq X$, there exists $n\in\mathbb{N}$ such that for every finite $F\subseteq\Gamma$ with $|F|\geq n$, there is a continuous Γ -equivariant map $\pi:X\to X$ with the property that

$$\pi^{-1}(U_1), \ldots, \pi^{-1}(U_k)$$

are all *F*-syndetic.

Amply Syndetic Spaces

Definition (Amply syndetic Γ-space)

A Polish Γ -space X is amply syndetic if:

For every finite tuple of nonempty open sets $U_1,\ldots,U_k\subseteq X$, there exists $n\in\mathbb{N}$ such that for every finite $F\subseteq\Gamma$ with $|F|\geq n$, there is a continuous Γ -equivariant map $\pi:X\to X$ with the property that

$$\pi^{-1}(U_1),\ldots,\pi^{-1}(U_k)$$

are all F-syndetic.

For any $s \in \mathbb{N}_{>0}$, the space $\operatorname{Sep}(s)$ of asymptotic s-separators is an amply syndetic Γ -space. The free part is a free-amply syndetic space.

Genericity Theorem

$\mathsf{Theorem}$

Let X be a free amply syndetic Γ -space, and let Y be a free Polish Γ -flow.

Define

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}}.$$

For every unbounded family \mathcal{F} of finite subsets of Γ , the set of subshifts $Z \in \overline{S}$ that are \mathcal{F} -minimal forms a dense G_{δ} subset of \overline{S} .

Genericity Theorem

$\mathsf{Theorem}$

Let X be a free amply syndetic Γ -space, and let Y be a free Polish Γ -flow.

Define

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}}.$$

For every unbounded family \mathcal{F} of finite subsets of Γ , the set of subshifts $Z \in \overline{S}$ that are \mathcal{F} -minimal forms a dense G_{δ} subset of \overline{S} .

Genericity Theorem

$\mathsf{Theorem}$

Let X be a free amply syndetic Γ -space, and let Y be a free Polish Γ -flow.

Define

$$S = \overline{\{ \rho(X) : \rho : X \to Y \text{ continuous and } \Gamma \text{-equivariant} \}}.$$

For every unbounded family \mathcal{F} of finite subsets of Γ , the set of subshifts $Z \in \overline{S}$ that are \mathcal{F} -minimal forms a dense G_{δ} subset of \overline{S} .

Topology on \overline{S}

We view \overline{S} as a subspace of the space of closed Γ -invariant subsets of Y, equipped with the Vietoris topology.

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and Γ-equivariant}\}},$$

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

Idea.

① G_{δ} is easy to see. So the work is density

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

- **①** G_{δ} is easy to see. So the work is density
- ② Fix a nonempty open set $\mathcal{O} \subseteq \overline{S}$ in the Vietoris topology.

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

- **①** G_{δ} is easy to see. So the work is density
- ② Fix a nonempty open set $\mathcal{O} \subseteq \overline{S}$ in the Vietoris topology.

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

- **①** G_{δ} is easy to see. So the work is density
- 2 Fix a nonempty open set $\mathcal{O} \subseteq \overline{S}$ in the Vietoris topology.
- **3** By definition of \overline{S} , \mathcal{O} contains some subflow close to an image $\rho(X)$.

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

- **1** G_{δ} is easy to see. So the work is density
- 2 Fix a nonempty open set $\mathcal{O} \subseteq \overline{S}$ in the Vietoris topology.
- **3** By definition of \overline{S} , \mathcal{O} contains some subflow close to an image $\rho(X)$.

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

- **1** G_{δ} is easy to see. So the work is density
- 2 Fix a nonempty open set $\mathcal{O} \subseteq \overline{S}$ in the Vietoris topology.
- **3** By definition of \overline{S} , \mathcal{O} contains some subflow close to an image $\rho(X)$.
- Use the amply syndetic property of X: given finitely many open sets O_n in Y, we can find a Γ -equivariant map $\pi: X \to X$ such that $\pi^{-1}(\rho^{-1}(O_n))$ are all \mathcal{F} -syndetic.

Goal

Show that \mathcal{F} -minimal subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

- **1** G_{δ} is easy to see. So the work is density
- 2 Fix a nonempty open set $\mathcal{O} \subseteq \overline{S}$ in the Vietoris topology.
- **3** By definition of \overline{S} , \mathcal{O} contains some subflow close to an image $\rho(X)$.
- Use the amply syndetic property of X: given finitely many open sets O_n in Y, we can find a Γ -equivariant map $\pi: X \to X$ such that $\pi^{-1}(\rho^{-1}(O_n))$ are all \mathcal{F} -syndetic.

Goal

Show that $\mathcal{F}\text{-minimal}$ subshifts are dense G_{δ} in \overline{S} .

$$S = \overline{\{\rho(X) : \rho : X \to Y \text{ continuous and } \Gamma\text{-equivariant}\}},$$

- **1** G_{δ} is easy to see. So the work is density
- ② Fix a nonempty open set $\mathcal{O} \subseteq \overline{S}$ in the Vietoris topology.
- **3** By definition of \overline{S} , \mathcal{O} contains some subflow close to an image $\rho(X)$.
- Use the amply syndetic property of X: given finitely many open sets O_n in Y, we can find a Γ -equivariant map $\pi: X \to X$ such that $\pi^{-1}(\rho^{-1}(O_n))$ are all \mathcal{F} -syndetic.
- **5** Thus each O_n shows up F syndetically. Thus $\rho\pi$ gives up the appropriate approximation map

Thank you

• Thank you to the organizers!

Thank you

- Thank you to the organizers!
- Thank you for listening!