Measurable domatic partitions

(based on undergrad thesis research with Clinton Conley)

Edward Hou

Caltech

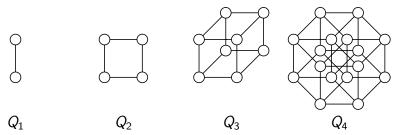
November 20, 2024

Introduction

Let G be a directed graph with possible loop edges on a vertex set V, so that G is just an arbitrary binary relation $G \subseteq V^2$.

A domatic partition is a partial function $f: V \rightharpoonup C$ which colors every out-neighborhood set $N_G(v) = \{w \in V : (v, w) \in G\}$ with all colors in C, i.e. $f[N_G(v)] = C$ for every $v \in V$.

Example: Q_n , the loop-free undirected n-regular hypercube graphs. Does Q_n admit domatic n-partitions?



Introduction

Theorem (Zelinka 1982): Q_n admits a domatic n-partition if and only if n is a power of two.

 Q_{\aleph_0} is the graph on $V=2^\mathbb{N}$, where $(v,w)\in Q_{\aleph_0}$ whenever $v,w:\mathbb{N}\to\{0,1\}$ differ at exactly one place.

 Q_{\aleph_0} is a Schreier graph:

Definition

Let $\Gamma \curvearrowright X$ be a group action, and let $S \subseteq \Gamma$ be a subset. Define:

$$Sch(\Gamma, S, X) = \{(x, s \cdot x) \in X^2 : x \in X, s \in S\}$$

Let $\Gamma = (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$, let $S = \{s \in \Gamma : s(i) = 1 \text{ exactly once}\}$, and let $\Gamma \curvearrowright \Gamma$ by left multiplication. Then $Q_{\aleph_0} \cong \operatorname{Sch}(\Gamma, S, \Gamma)$.

Introduction

Theorem (H)

Let Γ be a compact Polish group of finite Lebesgue covering dimension. Let $S \subseteq \Gamma$. Let $\Gamma \curvearrowright \Gamma$ by left multiplication. Let $G = \text{Sch}(\Gamma, S, \Gamma)$.

- The following are equivalent:
 - G admits a domatic \aleph_0 -partition with open parts.
 - G admits a domatic ℵ₀-partition with Baire measurable parts.
 - The topological closure $\overline{S} \subseteq \Gamma$ is uncountable.
- **2** Let μ be any Borel probability measure on Γ. If $S \subseteq \Gamma$ is infinite, then G admits a μ -measurable domatic \aleph_0 -partition.

 Q_{\aleph_0} does not admit domatic \aleph_0 -partitions with Borel or Baire measurable parts, but Q_{\aleph_0} admits a domatic \aleph_0 -partition with Haar $_\Gamma$ measurable parts.

Helpful facts

Let $G \subseteq X^2$. Note that if $1 \le k \le \aleph_0$, and \mathcal{F} is a σ -algebra on X, then G admits an \mathcal{F} -measurable partial domatic k-partition if and only if G admits an \mathcal{F} -measurable total domatic k-partition.

Let $G \subseteq H \subseteq X^2$. If $f: X \rightharpoonup C$ is a domatic partition for G, then f is also a domatic partition for H.

Let $G \subseteq X^2$, let $f: X \rightharpoonup C$ be a domatic |C|-partition, and let $C' \subset C$. The restriction $g = f \upharpoonright f^{-1}[C']: X \rightharpoonup C'$ is also a domatic |C'|-partition, where $|C'| \leq |C|$.

Helpful facts

In the remainder of this talk, Γ will always be a Polish group.

If Γ acts on X and X is a Polish space, then we assume the action is continuous. If X is a Borel space, then we assume the action is Borel.

If Γ acts on X, we let $E_{\Gamma}^X \subseteq X^2$ be its orbit equivalence relation.

A Borel graph is a Borel subset $G \subseteq X^2$.

We let $E_G \subseteq X^2$ be its connectedness equivalence relation.

\aleph_0 -partitions on $G = Sch(\Gamma, S, \Gamma)$: Part 1

Theorem

Let $\Gamma \curvearrowright X$ be continuous, and let $S \subseteq \Gamma$ be countable compact. Then $G = \operatorname{Sch}(\Gamma, S, X)$ has <u>no</u> Baire measurable domatic \aleph_0 -partition $f: X \to \mathbb{N}$.

Proof.

- Every Baire measurable $f: X \to \mathbb{N}$ is continuous on an $E_{\langle S \rangle}^{\chi}$ -invariant comeager set $A \subseteq X$.
- ② If $a \in A$, then by continuity, $f[S \cdot a] \subseteq \mathbb{N}$ is a compact set, i.e. finite in \mathbb{N} .
- **1** Therefore $f[N_G(a)] = f[S \cdot a] \neq \mathbb{N}$, comeagerly in X.

This also holds whenever $\overline{S} \supseteq S$ is countable compact.

The Lovász local lemma

Lemma (Lovász)

Let $A_0, A_1, \ldots, A_{n-1}$ be events in a probability space. Assume that:

- Every event A_i is dependent on at most d other events.
- For all i < n, $\Pr[A_i] \le p$.
- $ep(d+1) \leq 1$.

Then $\bigwedge_{i < n} \overline{A_i}$ happens with nonzero probability.

Let $k \in \mathbb{N}$ be fixed and let $k \ll N \in \mathbb{N}$ be sufficiently large.

Let $G \subseteq X^2$ be a simple undirected *N*-regular finite graph.

Then a random k-partition $f: X \to \{0, \dots, k-1\}$ is domatic with nonzero probability.

\aleph_0 -partitions on $G = Sch(\Gamma, S, \Gamma)$: Part 2

Theorem

Let Γ be a finite-dimensional compact Polish group, and assume $\overline{S} \subseteq \Gamma$ is uncountable. Then $G = \text{Sch}(\Gamma, S, \Gamma)$ has a domatic partition with \aleph_0 disjoint open parts.

We prove this theorem using a lemma on finite partitions:

Lemma (Key lemma)

Let Γ be as above. For every $k, n \in \mathbb{N}$, there exists an $N \in \mathbb{N}$, such that for any size-N finite sets $F_0, \ldots, F_{n-1} \subseteq \Gamma$, there exist disjoint open sets D_0, \ldots, D_{k-1} , such that each right translate $F_i \cdot \gamma$ intersects every part D_i .

Lemma (Key lemma)

Let Γ be as above. For every $k, n \in \mathbb{N}$, there exists an $N \in \mathbb{N}$, such that for any size-N finite sets $F_0, \ldots, F_{n-1} \subseteq \Gamma$, there exist disjoint open sets D_0, \ldots, D_{k-1} , such that each right translate $F_i \cdot \gamma$ intersects every part D_i .

We prove this lemma in three steps:

• Let $d := \dim(\Gamma) < \infty$.

Step 1/3: Show that every "sufficiently fine" open cover $\mathscr U$ of Γ (every translate $F_i \cdot \gamma$ intersects every $U \in \mathscr U$ at most once) can be shrinked into an *open-cell packing* $\mathscr R$ of Γ , such that every $F_i \cdot \gamma$ intersects $\geq N-d$ many open cells $R \in \mathscr R$.

Let $N = |F_i|$ and $d = \dim(\Gamma)$.

Step 1/3: Show that every "sufficiently fine" open cover $\mathscr U$ of Γ (every translate $F_i \cdot \gamma$ intersects every $U \in \mathscr U$ at most once) can be shrinked into an *open-cell packing* $\mathscr R$ of Γ , such that every $F_i \cdot \gamma$ intersects $\geq N-d$ many open cells $R \in \mathscr R$.

Proof.

Construct ${\mathscr R}$ in a length- ω induction, making sure that

$$\dim(\Gamma) > \dim(F_i^{-1} \cdot \partial R_0) > \dim(F_i^{-1} \cdot \partial R_0 \cap F_i^{-1} \cdot \partial R_1) > \dots$$

for every distinct collection $R_0, R_1, \ldots \in \mathcal{R}$.

If $F_i \cdot \gamma$ intersects $(\Gamma \setminus \bigcup \mathscr{R}) = \bigcup \partial \mathscr{R}$ for $\geq d+1$ times, then since $\partial \mathscr{R}$ is fine,

$$\gamma \in F_i^{-1} \cdot \partial R_0 \cap \ldots \cap F_i^{-1} \cdot \partial R_d$$

with $R_0, \ldots, R_d \in \mathcal{R}$ distinct.

But
$$F_i^{-1} \cdot \partial R_0 \cap \ldots \cap F_i^{-1} \cdot \partial R_d$$
 has to be \emptyset .

Let $d = \dim(\Gamma)$.

Step 2/3: There is a constant $M_{\Gamma} < \infty$ depending only on d, and a "sufficiently fine" open cover $\mathscr U$ of Γ , such that every translate of every $U \in \mathscr U$ intersects $\leq M_{\Gamma}$ many other $V \in \mathscr U$.

Proof.

By a theorem of Gleason–Yamabe, Γ is an inverse ω -limit of d-dimensional Lie groups.

So $1_{\Gamma} \in \Gamma$ has a neighborhood basis of symmetric open sets $B \ni 1_{\Gamma}$ of bounded doubling: at most $(2 + \varepsilon)^d$ translates of B pack into $B^2 \subseteq \Gamma$. Let $\mathscr U$ be a minimal covering of Γ using translates of only one such $B \ni 1_{\Gamma}$.

(In reality, we need something slightly stronger than stated above, but the proof is the same...)

Lemma (Key lemma)

Let Γ be as above. For every $k, n \in \mathbb{N}$, there exists an $N \in \mathbb{N}$, such that for any size-N finite sets $F_0, \ldots, F_{n-1} \subseteq \Gamma$, there exist disjoint open sets D_0, \ldots, D_{k-1} , such that each right translate $F_i \cdot \gamma$ intersects every part D_j .

Step 3/3: Fix a sufficiently fine open cover \mathscr{U} of locally bounded growth, and fix an open-cell packing \mathscr{R} that shrinks \mathscr{U} .

Show that using the Lovász local lemma, a random k-coloring of the parts in $\mathscr R$ is exactly as desired: The locally bounded growth condition of $\mathscr U$ feeds into the locality requirement of Lovász local lemma. \square

Note: The key lemma also holds if every F_i is infinite.

Theorem

Let Γ be a finite-dimensional compact Polish group, and assume $\overline{S} \subseteq \Gamma$ is uncountable. Then $G = Sch(\Gamma, S, \Gamma)$ has a domatic partition with \aleph_0 disjoint open parts.

Let $D, P \subseteq \Gamma$. We say that D dominates P if every translate $P \cdot \gamma$ intersects D, i.e. $P \cdot \gamma \cap D \neq \emptyset$ for every $\gamma \in \Gamma$.

Lemma (Splitting lemma)

Let Γ be as above. If $U \subseteq \Gamma$ is open and dominates a nonempty perfect set $P \subseteq \Gamma$, then there are disjoint open sets $A_0, A_1 \subseteq U$, each of which dominates P.

Let $D, P \subseteq \Gamma$. We say that D dominates P if every translate $P \cdot \gamma$ intersects D, i.e. $P \cdot \gamma \cap D \neq \emptyset$ for every $\gamma \in \Gamma$.

Lemma (Splitting lemma)

Let Γ be as above. If $U \subseteq \Gamma$ is open and dominates a nonempty perfect set $P \subseteq \Gamma$, then there are disjoint open sets $A_0, A_1 \subseteq U$, each of which dominates P.

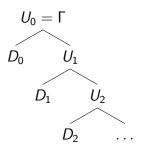
Proof.

Using compactness of Γ , find perfect subsets $P_0,\ldots,P_{n-1}\subseteq P$, such that for every $\gamma\in\Gamma$, there exists i< n, such that $P_i\cdot\gamma\subseteq U$. Apply the key lemma to P_0,\ldots,P_{n-1} to get dominating sets $D_0,D_1\subseteq\Gamma$, and let $A_j:=U\cap D_j$.

Theorem

Let Γ be a finite-dimensional compact Polish group, and assume $\overline{S} \subseteq \Gamma$ is uncountable. Then $G = Sch(\Gamma, S, \Gamma)$ has a domatic partition with \aleph_0 disjoint open parts.

Fix a perfect set $P \subseteq \overline{S}$. By the splitting lemma:



 $\langle D_n : n < \omega \rangle$ are disjoint and dominate P. Since each D_n is open, D_n necessarily also dominates S.

So $\langle D_n : n < \omega \rangle$ is an open domatic \aleph_0 -partition for G.

An application

Note that if we assume $S=\overline{S}$ is closed, then we can perform a full-binary-tree splitting of $U_0=\Gamma$: In the splitting lemma, compactness implies we may assume $\overline{A_0}, \overline{A_1}\subseteq U$.

Corollary

Let Γ be as before. Let $P \subseteq \Gamma$ be a nonempty closed perfect set. Then there are 2^{\aleph_0} disjoint closed sets $\langle D_x : x \in 2^{\mathbb{N}} \rangle$, each of which dominates P.

Theorem (Erdős-Kunen-Mauldin 1981, rephrased)

Let $P \subseteq \mathbb{R}$ be a nonempty closed perfect set. Then there exists a Lebesgue null closed set D which dominates P.

 \mathbb{R} is not compact, but using $\Gamma = \mathbb{R}/\mathbb{Z}$ proves the above theorem.

An application

Let $D, P \subseteq \Gamma$. We say that D dominates P if every translate $P \cdot \gamma$ intersects D, i.e. $P \cdot \gamma \cap D \neq \emptyset$ for every $\gamma \in \Gamma$.

One can check that D dominates P if and only if $P^{-1} \cdot D = \Gamma$.

Theorem (Erdős-Kunen-Mauldin 1981)

Let $P \subseteq \mathbb{R}$ be a nonempty closed perfect set. Then there exists a Lebesgue null closed set D such that $P + D = \mathbb{R}$.

Theorem (H)

Let $1 \le n \in \mathbb{N}$, and let $P \subseteq \mathbb{R}^n$ be a nonempty closed perfect set. Then there are 2^{\aleph_0} disjoint closed sets $\langle C_i : i < 2^{\aleph_0} \rangle$, such that $P + C_i = \mathbb{R}^n$ and $C_i + C_j = \mathbb{R}^n$ for all $i,j < 2^{\aleph_0}$ possibly equal.

The proof is very similar to the one we just saw.

Question

In the main theorem, can we drop the "finite dimension" assumption?

Unknown, even for $\Gamma = (\mathbb{R}/\mathbb{Z})^{\mathbb{N}}$...

\aleph_0 -partitions on $G = Sch(\Gamma, S, \Gamma)$: Part 3

Theorem (H)

Let $G \subseteq X^2$ be an out-degree \aleph_0 -regular Borel graph with countable in-degrees on a Borel probability space (X, μ) of vertices. Then G admits a μ -measurable domatic \aleph_0 -partition.

Lemma (Recoloring lemma)

Let $G \subseteq X^2$ be as above. Assume there exists a Borel function $f: X \to \mathbb{N}$ such that every out-neighborhood is colored infinitely by f, i.e. every $f[N_G(x)] \subseteq \mathbb{N}$ is infinite.

Then G admits both μ -measurable and Baire measurable domatic \aleph_0 -partitions.

Proof. Use a recoloring $g = (r \circ f) : X \to \mathbb{N}$, where $r \in \mathbb{N}^{\mathbb{N}}$ is picked using Fubini or Kuratowski–Ulam.

Theorem (H)

Let $G \subseteq X^2$ be an out-degree \aleph_0 -regular Borel graph with countable in-degrees on a Borel probability space (X, μ) of vertices. Then G admits a μ -measurable domatic \aleph_0 -partition.

Proof.

For every $k \in \mathbb{N}$ and $\varepsilon > 0$, a random coloring $f: X \to \{0, \ldots, k-1\}$ (defined over a finite Borel partition of X) can be shown to satisfy $f[N_G(x)] = \{0, \ldots, k-1\}$ over a μ -measure $\geq 1 - \varepsilon$ set of $x \in X$. Take a measure-theoretic limit as $(k, \varepsilon) \to (\infty, 0^+)$ using the Borel–Cantelli lemma. We get an $f: X \to [\mathbb{N}]^{<\infty}$ where every $N_G(x)$ is colored infinitely by f. Use the recoloring lemma to finish.

It follows that if $S \subseteq \Gamma$ is infinite, then $G = \operatorname{Sch}(\Gamma, S, \Gamma)$ admits μ -measurable domatic \aleph_0 -partitions.

Other results

Theorem

There exists a fully looped, undirected, \aleph_0 -regular, acyclic Borel graph $G \subseteq X^2$ on a Polish space X of vertices, without Baire measurable domatic 3-partitions.

Every such G admits Borel domatic 2-partitions, using a maximal independent set on a (Borel \aleph_0 -colorable) function subgraph $G_f \subseteq G$.

Proof.

(Lecomte 2009) There exists an \aleph_0 -uniform hypergraph version of the Kechris–Solecki–Todorcevic graph G_0 .

For each hyperedge e, place a new vertex v_e which connects to all of e.

Check that this new ordinary graph *G* works.

Edge-partitions

Let $G \subseteq X^2$ be a loop-free simple undirected \aleph_0 -regular Borel graph.

A symmetric function on the edges $f: G \to C$ is domatic if it colors every edge-neighborhood with all colors in C, i.e. $f[\{x\} \times N_G(x)] = C$ for every $x \in X$.

Theorem

Let $G \subseteq X^2$ be as above. Then on an E_G -invariant conull or comeager set of vertices, G admits symmetric Borel domatic edge- \aleph_0 -partitions.

Proof. Start with a Feldman–Moore edge-coloring, and use the recoloring lemma.

Edge-partitions

Let $G \subseteq X^2$ be a loop-free simple undirected \aleph_0 -regular Borel graph.

A symmetric function on the edges $f: G \to C$ is *domatic* if it colors every edge-neighborhood with all colors in C, i.e. $f[\{x\} \times N_G(x)] = C$ for every $x \in X$.

Theorem (Weilacher)

There exists a graph $G \subseteq X^2$ as above, which is moreover acyclic and Borel bipartite, such that G admits no Borel domatic edge-2-partitions and no Borel sinkless orientations.

The proof uses Marks' Borel determinacy graph technique.

Finite partitions on $G = Sch(\Gamma, S, \Gamma)$

Theorem (Bernshteyn): A version of the Lovász local lemma holds in the measure and category settings.

Theorem (Csóka–Grabowski–Máthé–Pikhurko–Tyros): A version of the Lovász local lemma holds in the Borel and uniform subexponential growth setting.

Corollary

Let $\Gamma \curvearrowright X$ be a free Borel action, and let $S \subseteq \Gamma$ be infinite. Then:

- $G = Sch(\Gamma, S, X)$ has measure-theoretic and Baire measurable domatic k-partitions for all $k \in \mathbb{N}$.
- ② If every finitely generated subgroup of Γ has subexponential growth, then G has Borel domatic k-partitions for all $k \in \mathbb{N}$.

Question: Is there a graph $G = \operatorname{Sch}(\Gamma, S, X)$ as above, without a Borel domatic k-partition for some $k \in \mathbb{N}$?

Thank you!