Hyperhyperfiniteness and complexity

(with Joshua Frisch, Zoltán Vidnyánszky)

Forte Shinko

UC Berkeley

October 23, 2024

Countable Borel equivalence relations

A countable Borel equivalence relation (CBER) is a Borel equivalence relation on a standard Borel space X with every class countable.

Example

A Borel action $\Gamma \curvearrowright X$ of a countable group generates a CBER.

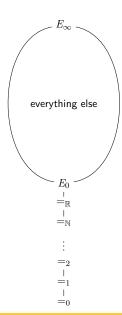
- $ightharpoonup \mathbb{Z} \curvearrowright S^1$
- ightharpoonup $\Gamma \curvearrowright 2^{\Gamma}$
- $ightharpoonup F_2 \curvearrowright 2^{F_2}$

Borel reduction preorder on CBERs:

 $E \leq_B F$ iff there is a Borel map $f: X \to Y$ with

$$x E x' \iff f(x) F f(x')$$

The CBERs under \leq_B



Hyperfinite CBERs

finite CBER: every equivalence class is finite.

hyperfinite CBER: increasing union of finite CBERs.

 E_0 on $2^{\mathbb{N}}$:

$$x E_0 y \iff x_n = y_n \text{ for cofinitely many } n$$

 E_0 is induced by the locally finite group $(\mathbb{Z}/2)^{<\mathbb{N}} \curvearrowright 2^{\mathbb{N}}$. Non-example:

The CBER induced by $F_2 \curvearrowright 2^{F_2}$ is NOT hf.

(because F_2 is non-amenable).

Theorem (Dougherty-Jackson-Kechris)

E is hyperfinite iff $E \leq_B E_0$.

Hyperfinite = nontrivial but barely

Beyond hyperfinite I: hyper hyper hyper hyper hyper

Question (Union problem)

Are the hyperfinite CBERs closed under increasing union?

If not, then we get a new notion:

hyperhyperfinite := increasing union of hyperfinite

We can keep going:

- ► hyperfinite
- hyperhyperfinite
- hyperhyperhyperfinite
- **.** . . .
- ▶ hyper^k-finite $(k \in \mathbb{N})$
- hyper $^{\alpha}$ -finite ($\alpha < \omega_1$)

Beyond hyperfinite II: scattered orders

Theorem (Slaman-Steel, Weiss)

A CBER E is hyperfinite iff every class can be \mathbb{Z} -ordered (in a Borel way).

A linear order is **scattered** if it doesn't contain a \mathbb{Q} . Linear orders have **Hausdorff derivative** $L \mapsto L'$ (glues adjacent points).

$$L$$
 is scattered $\iff L^{(\infty)} = 1$

 $\operatorname{rank}(L)$ is smallest α with $L^{(\alpha)} = 1$. $\operatorname{rank}(\mathbb{Z}) = 1$.

Scattered order hierarchy:

- ► Hyperfinite = "orderable by rank 1"
- "orderable by rank 2"
- **•** ...
- lacktriangle "orderable by rank lpha" $(lpha < \omega_1)$

Beyond hyperfinite III exclusive preview: Amenability

Hyperfinite \implies amenable.

Reiter function on E:

assigns to each $x \in X$ a prob measure p^x on $[x]_E$.

E is amenable:

there is a sequence $(p_n)_n$ of Reiter functions such that for all $(x,y)\in E$, $\lim_n \|p_n^y - p_n^y\| = 0.$

Definition of amenable group via Reiter functions gives

 Γ is amenable \Longrightarrow CBER induced by $\Gamma \curvearrowright X$ is amenable

Question (Weiss's question)

If Γ is amenable, is every $\Gamma \curvearrowright X$ hyperfinite?

Beyond hyperfinite III: α -amenability

```
amenable: \forall^{\infty} n \| p_n - q_n \| < \varepsilon.
```

2-amenable: $\forall^{\infty} n \ \forall^{\infty} m \ \|p_{n,m} - q_{n,m}\| < \varepsilon$

 $\alpha\text{-amenable:}$ converges with respect to Fin^α ideal

there is a Reiter sequence
$$(p_n)_n$$
 such that for all $(x,y)\in E$,
$$\mathrm{Fin}^\alpha \lim_n \|p_n^x - p_n^y\| = 0.$$

Amenability hierarchy:

- amenable
- ▶ 2-amenable
- **>** ...
- α -amenable ($\alpha < \omega_1$)

$$\mbox{hyper}^{\alpha}\mbox{-finite} \implies \alpha\mbox{-amenable}$$
 orderable by rank $\alpha \implies \alpha\mbox{-amenable}$

Measure

E: CBER on X

For a Borel probability measure μ on X:

$$E$$
 is μ - $\square \square \iff E \upharpoonright Y$ is $\square \square$ for some μ -conull Y

Examples: μ -hyperfinite, μ -treeable.

measure-
$$\triangle \square \iff \mu$$
- $\triangle \square$ for all μ

Examples: measure-hyperfinite, measure-treeable.

All measure versions of hyperfinite are equivalent!

Measure-hyperfinite: The final frontier

Theorem

The following are equivalent:

- measure-hyperfinite
- 2 measure- α -amenable
- **1** measure-[orderable by rank α]
- measure-[anything else that can reasonably be called amenable]

The hardest result here is (2) implies (1), due to Connes-Feldman-Weiss.

Question

Does measure-hyperfinite imply hyperfinite?

A complexity obstruction?

Hyperfiniteness is Σ^1_2 (the set of codes of hyperfinite CBERs is Σ^1_2)

"There exists an increasing sequence of CBERs such that ..."

Measure-hyperfiniteness is Π^1_1 (Segal).

measure-hyperfinite is hyperfinite \Longrightarrow hyperfinite is Π^1_1

A reasonable possibility in the other direction:

Hyperfiniteness is Σ_2^1 -complete.

The two extremes

Measure-hyperfinite = hyperfinite (monotonous and dull)

- ▶ Hyperfinite is Π_1^1 .
- Union Problem has a positive answer.
- Weiss's question has a positive answer.

Pure chaos

(vibrant and exciting)

- Hyperfinite is Σ_2^1 -complete.
- ► The hyper $^{\alpha}$ -hierarchy is strict.
- The "orderable by rank α" hierarchy is strict.
- The α-amenable hierarchy is strict.
- ► No secret implications.

The theorem

General belief: We're close to one of the two extremes. We give evidence supporting this.

Theorem (Frisch-信-Vidnyánszky)

If there is a hhf non-hf CBER, then hyperfiniteness is Σ_2^1 -complete.

Consequence of Σ^1_2 -completeness: there is no dichotomy for hyperfiniteness. In general:

Dichotomy for 凸凹 \Longrightarrow 凸凹 is $oldsymbol{\Delta}_2^1$

Smoothness is Σ^1_2 (there is a Borel reduction from E to equality). Non-smoothness is **also** Σ^1_2 (there is a Borel reduction from E_0 to E). So smoothness is Δ^1_2 .

The proof: a scheme associated to a hhf CBER

Suppose E is the increasing union of hyperfinite E_n . There are finite CBERs $(F_s)_{s\in\mathbb{N}^{<\mathbb{N}}}$ such that

- $F_{s^{\hat{}}0} \subseteq F_{s^{\hat{}}1} \subseteq F_{s^{\hat{}}2} \subseteq \cdots$, with union $E_{|s|}$.

For $x \in \mathbb{N}^{\mathbb{N}}$, define $E_x = \bigcup_n F_{x \mid n}$ (this is hyperfinite).

Main property: for every $e \in E$, almost every branch contains e:

$$\{x \in \mathbb{N}^{\mathbb{N}} : e \notin E_x\} \text{ is } K_{\sigma}.$$

Reason:

- ightharpoonup e appears eventually, say in E_7 .
- ▶ For every s with $|s| \ge 7$, only finitely many failures below s.
- ▶ So for every $s \in \mathbb{N}^7$, tree of failures below s is finitely branching, i.e. compact.

Main idea: hyperfinite is analytic-hard

Let E be hhf non-hf, and fix the scheme $(F_s)_{s \in \mathbb{N}^{<\mathbb{N}}}$. Given a tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$, define $E_T = \bigcap_{x \in [T]} E_x$.

$$T$$
 is ill-founded $\implies E_T \subseteq E_x$ is hf T is well-founded $\implies E_T = E$ is non-hf

The E_T are the sections of

$$\{(T, e) \in \mathsf{Trees} \times E : \forall x \in \mathbb{N}^{\mathbb{N}} (x \in [T] \implies e \in E_x)\}.$$

Is it Borel? Its complement is the projection of the Borel set

$$\{(T, e, x) \in \mathsf{Trees} \times E \times \mathbb{N}^{\mathbb{N}} : x \in [T] \text{ and } e \notin E_x)\}.$$

Fiber above (T,e) is $\Pi^0_1 \cap K_{\sigma} = K_{\sigma}$. Done by K_{σ} -uniformization.

Upgrading to Σ^1_2 -hard

Recall for $x, y \in [\mathbb{N}]^{\mathbb{N}}$:

$$x \leq^* y \iff x(n) \leq y(n)$$
 for large enough n .

The **cone above** y is

$$\{x \in [\mathbb{N}]^{\mathbb{N}} : x \ge^* y\}.$$

A **non-dominating set** is a subset of $[\mathbb{N}]^{\mathbb{N}}$ which is disjoint from a cone. The previous proof basically does the following:

- Start with a non-hf CBER E on $[\mathbb{N}]^{\mathbb{N}}$.
- ② Show that E is hf on every non-dominating set (this uses hhf).
- Onclude that hyperfiniteness is analytic-hard.

Actually, we showed hf **uniformly** on all non-dominating sets. This pushes it to Σ_2^1 -hard.

Hyperfinite is Σ_2^1 -hard

Theorem

Suppose there is a non-hf CBER E on $[\mathbb{N}]^{\mathbb{N}}$ such that the restriction of $=_{[\mathbb{N}]^{\mathbb{N}}} \times E$ to $\{(x,y) \in [\mathbb{N}]^{\mathbb{N}} \times [\mathbb{N}]^{\mathbb{N}} : x \not\leq^* y\}$ is hf. Then hyperfiniteness is Σ_2^1 -complete.

This is actually a general fact about homomorphism problems. (E is hf iff $(E,E^c) \to (E_0,E_0^c)$)

Theorem

Let \mathcal{H} be a Borel \mathcal{L} -structure.

Suppose there is a Borel \mathcal{L} -structure \mathcal{G} on $[\mathbb{N}]^{\mathbb{N}}$ with no hom to \mathcal{H} , whose restriction to every non-dominating set uniformly homs to \mathcal{H} . Then "having a hom to \mathcal{H} " is Σ^1_2 -complete.

Essentially already in Todorčević-Vidnyánszky.

They showed 3-colorability is Σ_2^1 -complete (using $\mathcal{H} = K_3$).

Questions

"Hyperfinite is Σ^1_2 -complete" says nothing about the Union Problem. A potential equivalence:

Question

Is "Hyperfinite is Σ_2^1 -complete" equivalent to "There is a measure-hf non-hf CBER"?

Unclear how to use every measure.

Another direction:

Non-dominating sets form a σ -ideal.

Try other σ -ideals?

Question

Is there a non-hyperfinite CBER on $\mathbb{N}^{\mathbb{N}}$ which is hyperfinite on every compact set?